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Abstract

BYOL [7] leads migration of self-supervised learning techniques from contrastive
to non-constative paradigm. Non-constative techniques do not require negative
pairs to learn meaningful representations from the data. Their success mainly
depends on the stochastic composition of data augmentation techniques and the
siamese configuration of deep neural networks. However, BYOL in its original
form is limited to only two augmented views per training cycle. This motivates us
to extend BYOL from a single target network branch to multiple branches, which
enables simultaneous analysis of multiple augmented views of an input image.
Increasing branches of the target networks marginally increase the computational
cost as each branch is updated only using exponential moving average of online
network’s parameters. We demonstrate superior performance of Multi-Target
BYOL on several vision datasets by evaluating the representations learned by the
online network using linear evaluation protocols.

1 Introduction

Recent advancements in self-supervised learning faclitate effective usage of unlabelled data. Con-
trastive self-supervised methods like SimCLR [2], MoCo [8], PIRL [15], and InfoMin [19] achieve
performances comparable to supervised methods [11; 10; 14]. These methods use contrastive loss,
to reduce distance between embeddings of different instances of same image while increasing
the distance between embeddings of the different images. However, the contrastive paradigm of
self-supervised learning heavily depends on the availability of large negative samples to avoid repre-
sentational collapses, making them computationally expensive. BYOL provides a non-contrastive
approach that mitigates the inherent computational constraint imposed by contrastive methods. Unlike
SimCLR and MoCo, it directly minimizes the mean squared error between embeddings generated
from two different augmented views of an image and achieves comparable performances to its
contrastive counterparts. BYOL relies on stochastic composition of data augmentation techniques
and siamese configuration of deep neural networks [17; 18]. Aggressive data augmentation strategy
creates numerous samples from a single image which are subsequently processed by siamese network.
The two brances of siamese network in BYOL are called as online and target network.

Inspired by this, we extended the BYOL from a single target network to multiple target networks and
named it as Multi-Target BYOL (MT-BYOL). The stochastic composition of the data augmentations
also increases with each branch of the target network. In particular, MT-BYOL trains to predict
the representations generated by the multiple target networks from multiple augmented views of an
image. We hypothesize that this helps in better regularization of online network and enables faster
convergence. In summary, our contributions are as follows: i) we extend BYOL from a single target
network for an online network to multiple target networks for simultaneous processing of multiple
augmented views of an image; ii) we show that MT-BYOL achieves considerably better performance
as compared to BYOL with only marginally increasing of total computational cost; iii) we empirically
show that Multi-Target BYOL is relatively more resilient to changes in batch size: iv) we evaluate
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Figure 1: Overview of the proposed MT-BYOL, having multiple target network branches for an online
network. (tn+k, ....., tn+1, tn, tn−1, ....., tn−k) are the stochastic compositions of augmentations
which create (vn+k, ....., vn+1, vn, vn−1, ....., vn−k) augmented views of image x. θ are the trainable
parameters of online network while ξ is updated as EMA of θ. MT-BYOL minimizes the cross-
model similarity loss between representations generated by online network and target networks. sg
represents the stop-gradient operator.

the representations learned by MT-BYOL under the linear evaluation protocols on various computer
vision datasets and report the corresponding results.

2 Related Work

2.1 Contrastive Self-Supervised learning

Most contrastive learning methods use variants of InfoNCE [16] objective to learn embeddings, as:

LInfoNCE = −log
exp

(
h
(
zi
T zj/τ

))∑K
k=1,k 6=i exp (h (zi

T zk/τ))
(1)

where (zi, zj) forms the positive pair and (zi, zk) forms the negative pairs of input data points and
τ is the temperature hyperparameter. The summation in the denominator is over all the negative
pairs, which depends upon the current batch size K. Positive pairs are created from the different
augmented views (v, v

′
) of the same image while the negative pairs are formed using the different

augmented views of different images. The loss function encourages the network to bring embeddings
from from views of the same image closer while that from different image apart. h(zi, zj) measure
the similarity between zi and zj . The contrastive learning methods [7; 2; 8; 1] require a large pool of
negative samples, which makes them computationally expensive [3; 4].

2.2 Non-Contrastive Self-Supervised learning

Non-contrastive self-supervised methods do not depend upon the direct sampling of negative pairs to
train the networks. Recent methods like BYOL, SimSiam [5] rely only on positive pairs, where the
online network predicts the embeddings generated by target network. BYOL minimizes the similarity
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loss between projected embeddings from different views of an image, using the following loss term

L(θ) = −

〈
qθ(zθ), z

′

ξ

〉
‖qθ(zθ)‖2 ·

∥∥∥z′ξ∥∥∥
2

. (2)

Where θ represents the parameters of online network and updated by L(θ). Target network parameter-
ized by ξ get updates from an exponential moving average (EMA) of the θ i.e. (ξ ← (1− η)θ + ηξ)
where η is the decay parameter. qθ(zθ) is output from prediction head of online network for view v

while z
′

ξ represents embedding produced by target network for view v
′

of the input image x. SimSiam
is another non-constrastive self-supervised method and is same as BYOL without EMA.

3 Method

We extend BYOL to MT-BYOL, which uses multiple target networks for a single online network,
which allows simultaneous processing of multiple views of the given image. With each branch
of target network, the stochastic composition of data augmentation also increases by multifold.
Like BYOL, the online network in MT-BYOL, parametrized by θ, has three stages: a backbone
network fθ, an MLP projection head gθ, and finally another MLP prediction head qθ, as shown in
Figure 1. All target networks have the same architecture as the online network except the prediction
head. The target networks are parametrized by their respective weights ξi, where i ∈ [n− k, n+ k].
Prediction head of online network predicts the regression targets (zξn−k

,zξn+k
), generated from

different augmented views (vn+k, ....., vn+1, vn, vn−1, ....., vn−k) of an input image x by the tar-
get networks. MT-BYOL generates these different augmented views by applying augmentations
(tn−k, ....., tn+1, tn, tn−1, ....., tn−k) respectively by sampling from a set of standard augmentations.
MT-BYOL calculates the similarity score between embeddings qθ(zθ) and zξi to train the online
network. All target networks follow the online network and their respective parameters ξi are the
EMA of θ. The target networks are different from each other due to η employed in EMA.

Particularly for a given image x sampled uniformly from the set of images D, MT-BYOL generates
vn =∆ tn(x) by applying respective augmentations. vn is then passed to the online network which,
outputs qθ(zθ). From the other augmented views (vn+k, ....., vn+1) , (vn−1, ....., vn−k) different
target networks generate embeddings zξi respectively from their projection heads. Similarity score is
than calculated between the l2 normalized qθ(zθ) and zξi , where qθ(zθ) =

∆ qθ(zθ)/ ‖qθ(zθ)‖2 and
zξi =

∆ zξi/ ‖zξi‖2 using the loss defined in equation (3).

LMT
θ =

1

2k

n+k∑
i∈n−k,i 6=n

∥∥qθ(zθn)− zξi∥∥2

2
(3)

Number of loss pairs depends upon number of target branches employed in the model and defines as
k2(k + 1), where k is number or target networks and 1 refers to single online network.

We use symmetric form the loss LMT
θ defined in equation (3) based on the cross-model pairs from

different representations corresponding to different augmented views. The parameters θ of the online
network get updated by minimizing the LMT

θ using stochastic optimization technique. As stated
earlier parameters of the target networks are updated by ξi ← (1 − η)θ + ηξi where η ∈ [0, 1] is
the decay rate. Downstream tasks are performed by train a linear classifier which uses embeddings
generated by fθ after freezing θ.

4 Implementation and Experimental details

We trained MT-BYOL upto 3 target network branches for the CIFAR10 [12], CIFAR100 [12], STL-10
[6] and Tiny-Imagenet [13] datasets, with same set of augmentations as in the SimCLR. For CIFAR-10
we use ResNet-18 [9] as backbone network and for other datasets we use Resnet-50 [9]. The hidden
layer and output dimensions in both projection and prediction heads are 4096 with 256, respectively.
We train MT-BYOL for 800 epcohs using LARS [20] optiization technique with batch sizes of 256,
512 and 1024. We use base learning rate of 0.02 with cosine decay in all our experiments. Effective
learning rate depends upon the batch size, which is calculated while training by dividing the base
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Table 1: Test set classification accuracy of linear classifier evaluated on embeddings generated by the
frozen encoder for different datasets.

Method BYOL MT-BYOL(2) MT-BYOL(3)
Batchsize 256 512 1024 256 512 1024 256 512 1024
CIFAR10 85.46 87.59 88.34 90.29 90.51 91.31 90.64 91.19 91.56
CIFAR100 62.21 63.29 64.78 66.11 66.72 67.21 66.38 67.47 67.58
STL10 87.31 88.48 89.72 91.11 92.23 92.37 91.73 92.67 92.71
Tiny-ImageNet 54.46 55.79 56.63 56.54 56.78 57.12 56.73 57.03 57.43

(a) BYOL (b) MT-BYOL(3) (c) MT-BYOL(3)

Figure 2: Convergence plots of BYOL and MT-BYOL(3) on CIFAR10. (a) Original BYOL (b)
MT-BYOL(3) with same η for all three target network branches (c) MT-BYOL(3) with different
values of η.

learning rate with batch size. Different branches of target networks follow the online network using
EMA of θ with different initial values of η. As the training progress η approaches to 1.

To evaluate the quality of learned representations we follow the same pipeline as in [7; 2; 8; 15; 19].
We train linear layer model on frozen representations generated by online encoder. We report test set
accuracy on different benchmark datasets in Table 1. We use BYOL with aforementioned settings
as our baseline which is identical to MT-BYOL with a single target network branch. MT-BYOL(2)
and MT-BYOL(3) refer to BYOL with 2 and 3 target networks branches, respectively. Experiments
show that multiple target network branches considerably improve BYOL’s performance across all
the datasets. We see marginal improvements in performance with MT-BYOL(3) over MT-BYOL(2),
therefore we restrict our experiments with 3 target network branches. With 2 target network branches,
12 cross-model views are generate which provide enough regularization to the online network. To
better understand the behaviour of MT-BYOL, we compare the performance of BYOL with MT-
BYOL(3) with varying batch sizes and different initial values of η and plot the observations in
Figure 2. Figure 2(a) shows the convergence plot of BYOL. Figure 2(b) shows the performance of
MT-BYOL(3) with identical initial value of η for all the target network branches while figure 2(c)
have the plot for different values η′s corresponding to different branches of target networks. We
observe effect of variation in intital values of η is marginal whic provid ethat empirical evidences,
that multiple augmented views are the major factor in the performance of MT-BYOL. Further it is
important to note that both Table 1 and Figure 2 shows that MT-BYOL is less sensitive to variations
in batch size. A limitation of MT-BYOL, which we believe is inherited from BYOL, is when number
of images per class is low, the performance is also limited.

5 Conclusion

In this work we purposed MT-BYOL, which have multiple branches of target network. In MT-BYOL
online network is forced to match the outcomes of different target network branches, which use
multiple augmented views of an input image. This creates several pairs of augmented views and
corresponding losses to realize a strong regularization effect on the online network and enables
the backbone encoder to learn effective representations. Multiple branches of target network cost
marginal computational overhead as their parameters are estimated by EMA of online network.
Further we empirically observe resilience of MT-BYOL towards variations in batch size. In future we
will explore the effect of further increasing the branches and other augmentation techniques.
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